Meta-Stars: Multidimensional Modeling for Social Business Intelligence

Enrico Gallinucci - Matteo Golfarelli - Stefano Rizzi

University of Bologna - Italy

Summary

- Introduction: Social BI
- Topic hierarchy schema
- The Meta-Star approach
- Querying Meta-Stars
- Evaluation
- Conclusions

- The enormous amount of UGC provides decision makers with a fresh and timely perception of the market's mood
 - People voluntarily share tastes and thoughts, influencing business and society

- The enormous amount of UGC provides decision makers with a fresh and timely perception of the market's mood
 - People voluntarily share tastes and thoughts, influencing business and society
- Commercial tools are capable of digging useful information, identifying relevant parts and assigning them a polarity

- The enormous amount of UGC provides decision makers with a fresh and timely perception of the market's mood
 - People voluntarily share tastes and thoughts, influencing business and society
- Commercial tools are capable of digging useful information, identifying relevant parts and assigning them a polarity
- Current topic of research is the integration of these unstructured data to the Enterprise DW
 - Analysis capabilities of current commercial tools are very limited

- Our work is focused on the individuation of a smart model to best represent social data
 - Allow powerful analysis
 - Easy integration with enterprise data
 - Handle heterogeneity and dynamicity of social data

Analysis of textual UGC

• A key role in the analysis is played by topics, meant as specific concepts of interest within the subject area

Analysis of textual UGC

• A key role in the analysis is played by topics, meant as specific concepts of interest within the subject area

Analysis of textual UGC

• A key role in the analysis is played by topics, meant as specific concepts of interest within the subject area

- Topics are an obvious candidate dimension of the cubes for Social BI, but:
 - Trending topic are heterogeneous and change quickly over time
 - A classical dimension table with a static hierarchy is not suitable

• Consider a mobile-oriented scenario

- Consider a mobile-oriented scenario
 - Most topics can be classified into levels, that correspond to aggregation levels in traditional hierarchies

- Consider a mobile-oriented scenario
 - Most topics can be classified into **levels**, that correspond to aggregation levels in traditional hierarchies
 - Relationships between topics highlight roll-up relationships

- How is a topic hierarchy different from a traditional hierarchy?
 - I. Dynamicity: new topics, relationships and aggregation levels might be added at any time

- How is a topic hierarchy different from a traditional hierarchy?
 - I. Dynamicity: new topics, relationships and aggregation levels might be added at any time
 - 2. Mixed granularity (facts associated to non leaf-topics) and unbalanced hierarchies

- How is a topic hierarchy different from a traditional hierarchy?
 - I. Dynamicity: new topics, relationships and aggregation levels might be added at any time
 - 2. Mixed granularity (facts associated to non leaf-topics) and unbalanced hierarchies
 - 3. Integration: some topics are also part of business hierarchies and require a direct connection with the enterprise cube

- How is a topic hierarchy different from a traditional hierarchy?
 - I. Dynamicity: new topics, relationships and aggregation levels might be added at any time
 - 2. Mixed granularity (facts associated to non leaf-topics) and unbalanced hierarchies
 - 3. Integration: some topics are also part of business hierarchies and require a direct connection with the enterprise cube
 - 4. Semantics: roll-up relationships between topics can have different semantics

- Meta-Stars overcome these issues by using a combination of modeling strategies
- Navigation tables
 - Support hierarchy instances with different lengths and non-leaf facts
 - Allow different roll-up semantics to be explicitly annotated
- Meta-modeling
 - Enable hierarchy heterogeneity and dynamicity to be accommodated
- Traditional dimension tables
 - Easy integration with standard business hierarchies

• Implementation of a Meta-Star requires two components:

I. A Topic Table

- Stores all the topics of the hierarchy
- Topic levels can be modeled in a static way (i.e., like in a classical dimension table)

2. A Rollup Table

• Stores every relationship between two topics in the transitive closure

• One row for each topic

<u>IdT</u>	Торіс	Level
I	8MP Camera	Component
2	Galaxy III	Product
3	Galaxy Tab	Product
4	Smartphone	Туре
5	Tablet	Туре
6	Mobile Tech	Category
7	Samsung	Brand
8	Finger Path.	-
9	Touchscreen	-

ΤΟΡΙΟ Τ

- Implementation of a Meta-Star: the **topic table**
 - One row for each topic

TOPIC_T					
<u>IdT</u>	Торіс	Level			
I	8MP Camera	Component			
2	Galaxy III	Product			
3	Galaxy Tab	Product			
4	Smartphone	Туре			
5	Tablet	Туре			
6	Mobile Tech	Category			
7	Samsung	Brand			
8	Finger Path.	-			
9	Touchscreen	-			

- Implementation of a Meta-Star: the **topic table**
 - One row for each topic
 - Columns for each static level, like in a classical dimension table

<u>IdT</u>	Торіс	Level	Product	Туре	Category
I	8MP Camera	Component	-	-	-
2	Galaxy III	Product	Galaxy III	Smartphone	Mobile Tech
3	Galaxy Tab	Product	Galaxy Tab	Tablet	Mobile Tech
4	Smartphone	Туре	-	Smartphone	Mobile Tech
5	Tablet	Туре	-	Tablet	Mobile Tech
6	Mobile Tech	Category	-	-	Mobile Tech
7	Samsung	Brand	-	-	-
8	Finger Path.	-	-	-	-
9	Touchscreen	-	-	-	-

TOPIC	٦
	_

- Implementation of a Meta-Star: the **roll-up table**
 - One row for each topic
 - One row for each arc in the transitive closure of the hierarchy

	ROLLUP_I	
<u>ChildId</u>	RollUpSignature	<u>FatherId</u>
I	000000	I
2	000000	2
	000000	•••
1	100000	2
1	100000	3
2	010000	4
2	001000	7
4	000100	6
8	000001	9
2	000010	9
	•••	•••
	110000	4
	110000	5
1	101000	7
1	100010	9
2	010100	6
3	010100	6
	•••	•••
	110100	6
	•••	•••

_ _ _ _

- Implementation of a Meta-Star: the **roll-up table**
 - One row for each topic
 - One row for each arc in the transitive closure of the hierarchy

	ROLLUP_I	
<u>ChildId</u>	RollUpSignature	<u>FatherId</u>
I	000000	I
2	000000	2
	000000	•••
I	100000	2
I	100000	3
2	010000	4
2	001000	7
4	000100	6
8	000001	9
2	000010	9
	•••	•••
I	110000	4
I	110000	5
I	101000	7
I	100010	9
2	010100	6
3	010100	6
	•••	•••
I	110100	6
•••	•••	•••

_ _ _ __

- Each bit of the *roll-up* signature corresponds to one roll-up semantics
- If the hierarchy includes a directed path from t₁ to t₂, the bits corresponding to the involved roll-up semantics are set to I

• The combination of meta-modeling with the roll-up table accommodates the dynamicity of the topic hierarchy

<u>IdT</u>	Торіс	Level			
I	8MP Camera	Component			
2	Galaxy III	Product			
3	Galaxy Tab	Product			
4	Smartphone	Туре			
5	Tablet	Туре			
6	Mobile Tech	Category			
7	Samsung	Brand			
8	Finger Path.	-			
9	Touchscreen	-			

<u></u>	ROLLUP_T	
<u>ChildId</u>	RollUpSignature	<u>FatherId</u>
I	000 0 000	I
2	000 0 000	2
	000 0 000	•••
1	100 0 00	2
1	100 <mark>0</mark> 00	3
2	010 0 00	4
2	00 0 00	7
4	000 00	6
8	000 0 01	9
2	000 0 10	9
		•••
	110 <mark>0</mark> 00	4
	110 <mark>0</mark> 00	5
	101 <mark>0</mark> 00	7
	100 <mark>0</mark> 10	9
2	010 00	6
3	010100	6
		•••
	110 1 00	6
	•••	•••

- Question: what is the current average sentiment over smartphones?
 - Facts can be associated to non-leaf topics
 - Result's meaning is highly influenced by the involved semantics

- Question: what is the current *average* sentiment over smartphones?
 - Facts can be associated to non-leaf topics
 - Result's meaning is highly influenced by the involved semantics

- Question: what is the current *average* sentiment over smartphones?
 - Facts can be associated to non-leaf topics
 - Result's meaning is highly influenced by the involved semantics

- Question: what is the current average sentiment over smartphones?
 - Example of query with topic aggregation

110100

6

- Question: what is the current average sentiment over smartphones?
 - Example of query with **semantic-aware** topic aggregation

BITAND (RU_Sign, 010000) = RU_Sign

- Question: what is the current average sentiment over smartphones?
 - Example of query with topic aggregation using static levels

Tasiahian		FTI		FT2	
iopic nier.	Group-by	Meta-star	Star s.	Meta-star	Star s.
	0				
ні	I				
	2				
	0				
H2	I				
	2				
	0				
H3	I				
	2				

Number of levels in the group-by predicate			$\begin{array}{c} \text{FT1} \rightarrow 1\text{M facts} \\ \text{FT2} \rightarrow 10\text{M facts} \end{array}$					
-							V	1
	Topic hier	Group-byl		FT	I	ļ	F	T2
			Meta	-star	Star s.		Meta-star	Star s.
		0						
	HI	I						
		2						
		0						
	H2	I						
		2						
Γ		0						
	H3	I						
	•	2						
						-		
	Topic hier.	TOPIC	_T	ROL	LUP_T		fan-out	tree-height
	н	106		e	526		4	4
	H2	658	}	4	514		8	4
	H3	27,30)6	334	4,962		4	8

- Performances of Meta-Star are compared with traditional star schemata using queries with Topic Aggregation
 - Tests run using the Oracle IIg RDBMS on a quad-core machine
 - Each execution time (in seconds) is the average time of 3 different queries with different selection predicates

Tasiahian	Group-by	FTI		FT2	
lopic nier.		Meta-star	Star s.	Meta-star	Star s.
	0	13.8	12.7	140.0	137.2
HI	I	16.0	5.8	174.6	64.3
	2	16.6	14.6	162.4	162.1
	0	13.6	13.0	136.0	133.6
H2	I	16.7	5.6	179.5	179.4
	2	17.0	16.2	175.8	162.2
	0	12.2	9.0	139.1	126.6
H3	I	15.9	14.1	147.3	172.1
	2	35.1	16.9	187.1	144.2

- Performances of Meta-Star are compared with traditional star schemata using queries with Topic Aggregation
 - Tests run using the Oracle IIg RDBMS on a quad-core machine
 - Each execution time (in seconds) is the average time of 3 different queries with different selection predicates

Tapiahian		F F	ГІ	FT2	
Topic nier.	Group-by	Meta-star	Star s.	Meta-star _A	Star s.
	0	13.8 🧹	12.7	140.0 🗸	137.2
ні	I	16.0	5.8	174.6	64.3
	2	16.6	14.6	162.4	162.1
	0	13.6	13.0	136.0	133.6
H2	I	16.7	5.6	179.5	179.4
	2	17.0	16.2	175.8	162.2
	0	12.2	9.0	139.1	126.6
H3	I	15.9	4.	147.3	172.1
	2	35.1	16.9	187.1	144.2

In most cases star schemata outperform meta-stars, but the gap is quite limited and perfectly acceptable

- Performances of Meta-Star are compared with traditional star schemata using queries with Topic Aggregation
 - Tests run using the Oracle IIg RDBMS on a quad-core machine
 - Each execution time (in seconds) is the average time of 3 different queries with different selection predicates

Topic hier.	Group-by	FTI 🖊		FT2	
		Meta-star	Star s.	Meta-star	Star s.
н	0	13.8	12.7	140.0	137.2
	I	16.0	5.8	174.6	64.3
	2	16.6	14.6	162.4	162.1
H2	0	13.6	13.0	136.0	133.6
	I	16.7	5.6	179.5	179.4
	2	17.0	16.2	175.8	162.2
H3	0	12.2	9.0	139.1	126.6
	I	15.9	14.1	147.3	172.1
	2	35.1	16.9	187.1	144.2

The execution time is mostly spent on the fact table, as the increase of execution time is proportional to the increase of the fact table size

- Performances of Meta-Star are compared with traditional star schemata using queries with Topic Aggregation
 - Tests run using the Oracle IIg RDBMS on a quad-core machine
 - Each execution time (in seconds) is the average time of 3 different queries with different selection predicates

Topic hier.	Group-by	FTI		FT2	
		Meta-star	Star s.	Meta-star	Star s.
н	0	13.8	12.7	140.0	137.2
	1	16.0	5.8	174.6	64.3
	× 2	16.6	14.6	162.4	162.1
	0	13.6	13.0	136.0	133.6
H2	1	16.7	5.6	179.5	179.4
	2	17.0	16.2	175.8	162.2
Н3	0	12.2	9.0	139.1	126.6
		15.9	14.1	147.3	172.1
	2	35.1	16.9	187.1	144.2

Execution times on the meta-star increase smoothly for group-by's with increasing number of levels

- Performances of Meta-Star are compared with traditional star schemata using queries with Topic Aggregation
 - Tests run using the Oracle IIg RDBMS on a quad-core machine
 - Each execution time (in seconds) is the average time of 3 different queries with different selection predicates

Topic hier.	Group-by	FTI		FT2		
		Meta-star	Star s.	Meta-star	Star s.	
	ні	0	13.8	12.7	140.0	137.2
		I	16.0	5.8	174.6	64.3
		2	16.6	14.6	162.4	162.1
	H2	0	13.6	13.0	136.0	133.6
		I	16.7	5.6	179.5	179.4
		2	17.0	16.2	175.8	162.2
Ţ	НЗ	0	12.2	9.0	139.1	126.6
		l I	15.9	14.1	147.3	172.1
		2	35.1	16.9	187.1	144.2

Execution times on the meta-star increase slowly for topic and roll-up tables with increasing cardinality

Conclusions

- Meta-Stars: an expressive solution to model topic hierarchies for SBI
 - We proposed an approach that handles dynamics of topic classification, integrability with business hierarchies, semantics-aware queries
 - We analyzed its performance against traditional star schemata

Conclusions

- Meta-Stars: an expressive solution to model topic hierarchies for SBI
 - We proposed an approach that handles dynamics of topic classification, integrability with business hierarchies, semantics-aware queries
 - We analyzed its performance against traditional star schemata
- A real-life experiment is being conducted:
 - http://semantic.csr.unibo.it/
 - Implemented a meta-star with a topic hierarchy on Italian politics
 - User interface allows for simple OLAP analysis

Conclusions

- Now working on:
 - Cost model for Meta-Stars
 Studying functions that allow the size and efficiency of a topic hierarchy to be evaluated a priori
 - Topic Hierarchy generation
 Developing an automatic task to turn a topic hierarchy modeled as an ontology into a Meta-Star
 - Coupling SQL and OWL
 Study the possibility of using the OWL language to directly query the topic hierarchy
 - Summarizability for N-M relationships
 Study which summarization rationales are valid and can be adopted to produce interesting results
 - Historicization
 Extending the architecture to handle topic and roll-up semantics variations over time
 - OLAP front-end
 Investigate how commercial OLAP front-ends can be extended to efficiently support meta-stars